

株式会社ミウラ センサー研究所

代表取締役 三浦 賀一氏

会社概要

住 所:仙台市泉区高森二丁目1-40

21世紀プラザ研究センター207

設 立:平成11年 資本金:10百万円

事業内容:センサー機器研究開発

話: 022 (374) 3207

U R L: http://www.miura-sensor.jp

有害元素の有無判定が手軽に短時間で 可能な非接触型有害元素検出装置 「Denbee Base Type I」を独自開発

今回は「七十七二ュービジネス助成金」受賞企業 の中から、研究開発型企業として材料検査装置製作 や光計測システムの構築、装置製作を行い、有害元 素の有無判定が手軽に短時間で可能な非接触型有害 元素検出装置「Denbee Base Type I | の開 発・製品化に成功した、株式会社ミウラセンサー研 究所の三浦社長を訪ね、今日に至るまでの経緯や今 後の事業展開などについてお伺いしました。

「光」に魅せられて

七十七ニュービジネス助成金を受賞されたご感 想をお願いします。

今回の受賞により会社の知名度が上がったと同時 に驚く現象がありました。これまで「Denbee Base Type I 」はクリーンルーム内での作業を中 心に用いられていましたが、食品中の有害物質、汚 泥、土砂、産廃物など比較的ダーティーな環境での 使用を求める声が増えてユーザーの幅が広がりまし た。

この機会をチャンスとして、幅広いユーザーに対 応できるよう新たな取組みを行っていきたいと思い ます。

一創業当初の経緯をお聞かせください。

大学時代は電子回路を専攻し研究活動に没頭し、 卒業後は東北大学で研究生として緑色発光ダイオー ドの研究を2年間させて頂きました。その後神奈川 県横浜市にあるセンサー機器開発会社へ入社し様々 な実験研究を行うなど約4年間働きました。そして 1984年に独立し、神奈川県横須賀市において「ミ ウラセンサー研究所 | を創業しました。

創業当初の業務内容は、創業地が工場の多く集ま る神奈川県だったために町工場や大手開発研究所な どの製品試作が多く、専門的に光ファイバーと発光 ダイオードでセンサーを製作していました。最初の 発明は、自動車のブレーキパイプや燃料パイプの振 動を簡単に測定するセンサーで、その後の自信へと 繋がるきっかけとなりました。1998年に当時のス ポンサー会社が倒産し、また息子もまだ幼かったた め思い切って地元である仙台へ帰ることを決意し研 究所を移転しました。そして2005年に研究所を増 設し、翌年には株式会社へと組織変更しました。

現在の事業内容は、液晶関連の検査装置やレーザ ーシステムの開発、センサー関連の委託研究などで、 X線センサーは着手してまだ間もないですが今後の 主力事業にしていきたいと考えています。

有害元素を簡単測定

「非接触型有害元素検出装置」開発の経緯につ いてお聞かせください。

最初のきっかけはバイオ関連の解析要望を受けた ことですが、最近では輸入食品を始め食器、玩具、 化粧品などから有害物質が検出され社会問題となっ ているため商品管理や検査体制強化の目的で開発し ました。2006年よりスタートした開発過程では、 X線やシステムなど各専門の研究者と密な情報交換 を行いながら、約2年間かけて独自開発に成功しま した。本装置の名称である「Denbee」とは東北弁 で「額」を意味し、優れた頭脳を持つ装置であるこ

Denbee Base Type I

とを表しています。

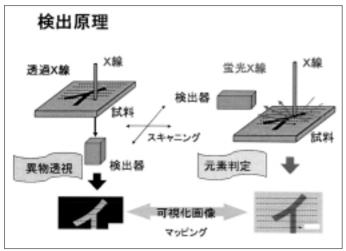
――装置の概要について教えてください。

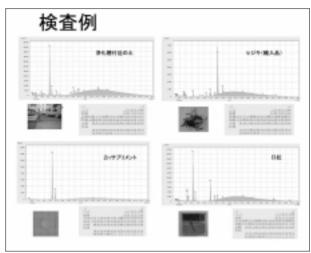
物を透過して内部の物質構成や元素の種類を判定 することができるX線を対応波長とする「Denbee Base Type I 」は、有害元素の検出・分析、元素 分布の測定、透視画像の取得ができます。

検査対象物は、建築材料・玩具・陶器・アクセサ リー・健康補助食品・食器・化粧品から、ひじき・ 海苔・わかめ・貝・干物などの海産物や、果物・木 の実・米・大豆・コーヒー・茶葉などの農産物、土 壌・汚泥・河川・大気まで幅広いです。

検出される元素は、カドミウム・水銀・ヒ素・鉛 などの有害元素から無害な元素まであり、検査対象 物に含まれるほとんどの元素が検出できます。

煩雑さの解消


-装置の特徴について教えてください。


従来のX線装置は、医療機関のレントゲンに使用 されるなど特殊なものとして位置づけられ、対象物 をパウダー状にするなどの前処理作業やクリーンな 環境下での計測制限があり使い勝手の悪いものでし た。

当社の装置は、他社製品が平均2400万円なのに 対して800万円~1400万円とローコストで、高感度 電子冷却検出器と小型X線光源採用により、幅

> 50×奥行44×高さ61cm、重量70kgと コンパクト化を実現しました。測定時 間は、元素分析のみであれば数秒、水 分を含んでいるものは約5分、元素濃 度の測定は約10分で完了します。ま た、試料の加工や細工が不要で、試料 台がモーター駆動により自由自在に動 くためあらゆる角度からの測定が可能 です。昨年には、第11回「みやぎも のづくり大賞 | グランプリを獲得しま した。

Denbee Base シリーズについて教えてくださ U10

X線・紫外線・可視光線・赤外線の対応波長によ り Type I~IVがあり、試料に対する光線走査や透 過光強度分布の画像化などが可能で全ての波長に共 通した装置もあります。例えば、顔に紫外線を当て るとダメージ部分だけシミとなって反応するよう に、紫外線を対応波長とする Type Ⅱ は食品の腐敗 具合などの品質判定に用いられます。また、糖分を 吸収する波長もあり、吸収量によって糖分の濃度を 測定することができるなど、試料に適した波長によ り計測・検査システムが構築できます。

光源の持つパワーを応用

検査方法について教えてください。

「蛍光 X 線分析法 | という測定方式を採用してい ます。蛍光X線とは、元素に特有のX線を当てるこ とによってはじき出された電子が元に戻る際に放出 されるX線のことで、この蛍光X線のエネルギーが 元素に固有であることを応用して、その波長によっ て測定試料を構成する元素の分析を行います。

例えば、リモコンは目には見えない波長の赤外光 線エネルギーをパルス変調送信することで各チャン ネルに対応したTV番組の選択が出来ます。X線に ついてもエネルギーを強めることによって鉄や銅な

どの重い元素だけでなく、リンやカリウムなどパウ ダー状の軽い元素まで測定できるなど、放射するパ ワーで反応する元素が異なります。

検査手順はとても簡単で、まず試料をサンプルベ ースに固定して試料台のホルダーに載せ、装置のド アを締めてキースイッチの電源を入れます。そして、 接続しているパソコンの画面上の計測ボタンをクリ ックするだけです。10cm角程の大きさであれば、 前処理をすることなくそのまま装置へ入れて検査す ることができます。

──開発にあたり苦労したことはありますか。

食品から汚染物まで様々な種類のサンプルに含ま れる元素を、たった一つの装置で検出・分析すると いうシステムの構築が一番苦労しました。また、検 査対象品となるサンプルデータの集積も大変でし た。これまで、あらゆる対象物で実験を重ねて広範 囲なサンプルデータを取得してきましたが、最近で はお客様からの問い合わせにより新しいサンプルと しての発見が増えてきました。まだ実験できていな い物も多くあるため、今後もデータ集積を重ね対象 物の幅を広げていきたいと思います。

無限の市場を求めて

- 販売実績ついてお聞かせください。

様々な分析を行っている分析専門会社への販売実

開発室

績がありますが、現在は販売よりも問い合わせ件数 が多く、特に外国製品や食品などのサンプル持参に よる評価依頼が大半を占めています。

当社にとって営業活動は最重要課題です。現在は、 人員不足のため社長である私が営業を兼務し、青 森・岩手・新潟・東京については関連企業に営業を 委託しています。今後は専任の者を配置し、雑誌掲 載やコマーシャルなどの営業活動強化を図っていく 予定です。

-今後の市場についてお聞かせください。

販売対象となるユーザーは、食品関連では製造 元・生協・農協・漁業・デパート・コンビニエンス ストア、その他にも卸業者・流通業者・各種メーカ 一の検査部門などで、ユーザー層が広く今後市場規 模の一層の拡大が見込まれると思われます。しかし、 現状の価格では各ユーザー1台の購入は難しくロー コストの実現が大きな課題です。

仮に、一般家庭にも普及すると量産が可能となり 必然的にローコスト化が図られますが、まだ一般向 けの仕様にはなっておらずPR活動も不十分です。 現在は、様々な仕様ニーズに合った性能に改良して ローコスト化に努めています。

―販売後のサポート体制についてお聞かせくださ (1₀

装置内の X線管は約2000時間、光源は約2年で交

換が必要ですが、その他装置自体の消耗品は少なく 使用上での面倒な手入れなどは特にありません。販 売後は使用上の注意点や検査方法などについての十 分な説明を行い、安全使用の徹底に努めています。 また、当社装置の強みはオーダーメイドが可能とい うことです。大手メーカーは量産体制を採っている ためローコストですが、お客様のニーズに合った製 品づくりは行いません。しかし、当社は設計から販 売までトータルに対応しているため、使用段階にお いて検査対象物の種類や大きさなどの相談を受けた 場合には柔軟に対応していきたいと考えています。

300種を超える研究開発

一その他の研究開発について教えてください。

当社はこれまで研究開発型企業として、レーザー や光学素子を中心とした応力・変位・荷重などのセ ンサーシステム開発に携わり、多くの実績を挙げて きました。現在取扱っている主な開発製品は、液晶 パネルの欠陥を検査する「液晶欠陥用高輝度光源シ ステム」、CDやDVDの表面の欠陥を検査する 「CD・DVDスタンパー自動検査装置」、「白レー ザーによる虫歯検査装置」、「がん治療装置」などレ ーザーの応用装置などで、その他には大学などから の研究・試作依頼があります。また、光に関連する 助成事業にも積極的に取組んでおり、間もなく事業 化に至る研究開発もあります。

進化し続ける安全装置

- 「非接触型有害元素検出装置」の今後の動向に ついてお聞かせください。

現在の装置は試料台がモーター駆動により自由自 在に動き有害元素の含量も測定可能という特徴があ りますが、モーター駆動が無い有害元素検出機能の みのシリーズ開発の要望が多数あります。それによ り、当社の課題でもあるコンパクト化とローコスト 化の実現が期待できるためシステムの改良に取組ん でいます。

また、当社の装置は有害元素の検出が対象であり

化学合成された有害物質は検出できませんが、昨今 の食品偽装問題により食品サンプルの評価依頼が急 激に増加したため、早速、成分検査やアミノ酸、D NA検査そして350種の残留農薬検査サービスを提 携会社の協力を得て現在行っております。東北・北 海道地域ではなかなか1社では対応してくれません のでお気軽にご用命下さい。

その他にも少量の試料含量でも検出可能なシステ ム改良などユーザーのニーズに合った改良を積極的 に行い、将来的には各家庭の必需品となることを目 指しています。

─海外進出についてお聞かせください。

北京・ドイツ・アメリカなどの展示会への出展依 頼はありますが、X線装置に対する輸出規制がとて も厳しく海外へ持ち運ぶことは容易ではありませ ん。そのため、昨年はアメリカ・カナダ・ドイツ・ スイスの企業が来日し、実際に装置による検査を体 験できる機会を設けました。外国の中にはシステム 開発を苦手とする国もあるため、日本に比べて大き な反響がありました。今後は海外での製造・販売も 視野に入れて、世界規模での安全供給に努めていき たいと考えています。

意欲と連携による「ものづくり」

―「ものづくり」において大切なことは何だとお 考えですか。

ユーザーがいてこその「ものづくり」です。自分 が作りたいものだけを単に作るのではなく、ユーザ ーが求めているものに照準を合わせることが大切だ と思います。そして実際に使ったユーザーからの率 直な意見を参考に、よりニーズに合うものへと改良 を施すことが必要です。

また、一社で研究開発から製造・販売までトータ ルに対応することはとても難しく、なかなかできる ものではありません。それぞれを得意とする企業が 協力し合って初めて成り立つため、企業間の連携が とても大切であり、成功を収めるポイントになると 思います。

―最後にこれから起業する方へアドバイスをお願 いします。

起業して成功するかどうかは、社長としての適性 の有無によって決まると思います。私は社長になり たくて起業したのではなく、光についての研究を続 けてきた結果として起業し社長となったため、毎日 が反省の日々です。そんな私の支えは、誰にも負け ない「ものづくり」に対する意欲です。長く事業を 行っていると辛いことや落ち込むこともあります が、そういう時にこそ意欲を持続できるか自問自答 し、「ものづくり」への姿勢を省みることでやる気 が沸いてきます。

まずは自分の社長としての適性を見極めて、将来 どのような会社にしたいのか目標設定を行ってくだ さい。そして何よりも大切なことは、事業化に向け た強固な意欲を常に維持できるよう、自問自答を繰 り返しながら頑張ってください。

本社内にて

長時間にわたりありがとうございました。御社の 今後のますますの発展をお祈り申し上げます。

(20. 7. 22取材)